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The properties of chiral and achiral transformations between mirror images of n-dimen- 
sional point sets are investigated. Several rules are proven, relevant to chirality-preserving and 
chirality-abandoning molecular transformations. 

1. In t roduc t ion  and  preliminaries 

Molecular transformations which interconvert chiral mirror images yet avoid 
achiral intermediate nuclear configurations have been reported long ago [1], but 
still are considered oddities by many chemists. In this study we shall consider this 
problem in a more general setting: the transformation of chiral point sets in an n- 
dimensional Euclidean space. 

Chirality of point sets in various dimensions, specifically, chirality in the ordin- 
ary, three-dimensional space and two-dimensional chirality along planar surfaces 
are of importance in chemistry. In recent years the interest in mathematical- 
chemical aspects of chirality in general, n-dimensional spaces has increased. 
Detailed background information on several newer results can be found in refs. 
[2-43], whereas some of the earlier developments are reviewed in refs. [44,45]. 

In this study we are interested in various nuclear motions of molecules and their 
influence on molecular chirality. Usually, the chirality of nuclear arrangements is 
studied in a three-dimensional space; however, some motions can be restricted to 
two dimensions, for example, some molecular motions along surfaces of metallic 
catalysts can be approximated by motions along a plane. In rare instances, for 
example, within channels of zeolites or within nanotubes, one-dimensional chiral- 
ity of chain molecules may be relevant. Chirality problems of dimensions higher 
than three also occur in studies of potential energy hypersurfaces and multidimen- 
sional configuration spaces [46]. In this study we shall investigate the problem of 
chirality preserving and violating properties of motions of point sets in a general, n- 
dimensional Euclidean space E n. 
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Chirality will be considered in the following sense: a set S embedded in an n- 
dimensional space E n is chiral, if no rigid motion of S can bring it into superposition 
with its mirror image within E n. Otherwise, S is achiral. The definition of chirality 
is precise only if the space is specified. Chirality of point sets is dimension-depen- 
dent; a point set can be chiral when embedded in one Euclidean space, while the 
same point set embedded in a Euclidean space of different dimension can be achiral. 
In general, we use the terms n-chiral or n-achiral for a point set S if it is chiral or 
achiral, respectively, when embedded in the n-dimensional Euclidean space E n. 

The following important restriction applies: any n-chiral object S is (n + 1)- 
achiral. More precisely, the following restrictions hold: 

THEOREM 1 

An object S that is chiral in n-dimensions is achiral in (n + 1)-dimensions and 
in any higher dimensions. Chirality may occur only in the lowest dimension where 
S is embeddable. 

A simple proof and some implications of this theorem have been given in refs. 
[31,45]. 

A similarly simple but important property is proven below. Consider an n-chiral 
arrangement S ofm points in E n, where m is finite: 

S --  ( a l ,  a2, a 3 , . . ,  an, a n + l , . . ,  am-l, am}. (1) 

THEOREM 2 

For an n-chiral arrangement S of m points, each point aj ~ S can be moved in 
any direction by some small enough distance without S becoming n-achiral. 

Proof 
Take any point aj ~ S. Let d(aj, ak) denote the distance between any two points 

aj, ak of set S. Note that d(aj, ak) ~ 0 and positive for each k ~-j, since all points of 
S are different. Let a(S, aj)) denote the set of all possible locations for a displaced 
point as. which turn the set S into n-achiral. This set a(S, aj)) may be empty. Let 
d(aj, a(S,  aj)) denote the distance between point aj ~ S and set a(S, aj)), that is, the 
nearest new position for aj that turns the set S into n-achiral. If  a(S, aj)) is empty, 
then set d(aj, a(S, aj)) = oo. Note that the distance d(aj, a(S, aj)) ~ 0 and positive 
for each aj ~ S, since S is an n-chiral set. Define a distance d(aj) as 

d(aj) = (1/2)min{d(aj, ak),d(aj, a(S, aj))}k=l,...,m,k# j . (2) 

Evidently, d(aj) > 0 for each point aj ~ S, and each point aj can be moved in any 
direction by the distance d(aj) while the point set retains its n-chiral property. [] 

In other words, n-chiral configurations S of finite point sets form an open set in 
the corresponding configuration space. This can be regarded as the consequence of 
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the fact that  any non-trivial symmetry in E" can be destroyed by some infinitesimal 
change of  position of  some points. 

Of course, some n-chiral point  sets S cannot be turned into an n-achiral set by 
any mot ion  restricted to a limited number  of  points. We say that such sets S can tol- 
erate the arbitrary mot ion of some number  of points without becoming n-achiral. 
We shall return to this problem after a discussion of  some relevant concepts. 

We shall need the concept of  maximum n-achiral subset A of a finite, n-chiral 
point  set S [31,45]. 

Take a set S o f m  points, and the mirror image S O of S in E n. A set S O' obtained 
from S O by translation and rotation is called a version of S O . In a finite number  of 
steps we can determine the maximum number  c(S) of point coincidences possible 
between S and a version of S O. The collection of  points of S participating in such an 
arrangement of maximum number  of  coincidences is a maximum n-achiralsubset A 
of S, where the cardinality of A is c(S). As it has been pointed out [31,45], set A is not  
necessarily unique, however, for any finite point  set S there are only a finite number  
of  max imum n-achiral subsets, all with c = c(S) elements. The number  of  different 
pointwise partial superpositions between S and the versions S O' o fS  0 is bounded by 
the number  m! of  permutations of  the points of  set S, hence, indeed, a finite number  
of trials is sufficient to find c(S) and a maximum n-achiral subset A of  S. 

The value c = c(S) is at least n, the dimension of  the space, since any n points 
define a hyperplane that is at most  (n - 1)-dimensional, and any (n - 1)-dimen- 
sional hyperplane can be taken as a reflection plane. Such a reflection plane con- 
tains the selected n points common to both the original point  set S and its mirror  
image S O generated by this reflection plane, hence at least n point  pairs can be 
made coincident, c i> n. Evidently, for an n-chiral set S of  m points c is bounded by 
the relation c < m, otherwise, if c were equal to m, then the set S would be n-achiral, 
a contradiction. Note  that a symmetry operator implying the n-achirality of  a max- 
imum n-achiral subset A of S is not  necessarily a reflection hyperplane; for example, 
ifn -= 3, then the presence of  the familiar 3D rotation-reflection symmetry elements 
of  even fold are sufficient for achirality in 3D, where the corresponding operators 
S2k are used to diagnose achirality of A. In general, we shall denote a symmetry 
operator implying the n-achirality of a max imum n-achiral subset A by R. 

2. Chirality-preserving and chirality-abandoning motions of  point sets in n- 
dimensions 

Most  of  the general results derived in this section will be based on the relations 
between point  symmetry operators and motions of  individual points of  a finite 
point  set. 

We recall a rather self-evident property of  point  symmetry operations: a single 
application of  any symmetry operator R of  a finite point  set A has one of  the follow- 
ing two actions on a single point  aj of set A: 
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(i) R assigns aj to i tself( ifaj  is a fixed point  of  R), 

(ii) R assigns aj to a specific other  point ,  denoted  by a ? .  

Mot ions  of  a single point  of  a finite, n-chiral point  set S of  m points  in E ~ can 
affect the m a x i m u m  achiral subsets. Consider  a m a x i m u m  n-achiral  subset A of  S. 
I f  all points  o f  S are fixed, except a single poin t  aj which does not  belong to A, and  
if aj is al lowed to move  wi thout  constraints ,  then for any new posi t ion ~ o f  aj and  
for the result ing new set S' the following three cases cover all possibilities: 

(i) the m a x i m u m  n-achiral subset A of  S preserves its m a x i m u m  n-achiral  subset 
status in the new ar rangement  S', c( S) = c( S') = c, or 

(ii) the cardinal i ty c'(S') of  a new m a x i m u m  n-achiral subset A' is one greater  
than  c, c' = c + 1, or 

(iii)the cardinal i ty c'(S') o f  a new m a x i m u m  n-achiral subset A' of  S' is at  least 
c + + 2. 

Clearly, if c = n, then in case (i), the new point  set S' is still n-chiral. 
Similarly, if m > n + 1 and c = n, then  in case (ii), the cardinal i ty of  any maxi-  

m u m  n-achiral  subset A' of  the new point  set S ' is c' = n + 1, hence the new set St o f  
m > n + 1 points  is still n-chiral. 

Case (iii) can occur only by moving  aj to isolated locat ions of  the space E n, tha t  
is, there is no con t inuum within E n where case (iii) would  occur. This will be p roven  
after the es tabl ishment  of  some impor tan t  propert ies  o f  m a x i m u m  n-achiral  
subsets. 

The  set of  the isolated points  of  case (iii) is denoted  by W. Since points  o f  W 
are isolated, within a space E n of  dimensions n i> 2, any point  x no t  in W, x ~ IV, can 
be reached f rom point  aj by a pathpj(u)  avoiding set IV: 

pj (u ) :  [0, 1]--+E n , where pj(O) = aj,  pj(1) = x ~  IV, (3) 

pj(u) n w = 0, Vu. (4) 

This fact  will be exploited in proving a chirali ty-preserving in terconvers ion prop-  
erty of  chemical  t ransformat ions .  

We recall the intuit ive concept  of  tolerance, men t ioned  in the in t roduct ion:  a 
finite n-chiral point  set S may  tolerate arbi t rary mot ions  of  some n u m b e r  of  points  
wi thou t  becoming  achiral. Here we shall use a precise definition. 

DEFINITION 
A finite po in t  set S in E n is f - intolerant  n-chiral, if no mo t ion  of  a n y f  - 1 points  

can turn  S into an n-achiral set, but  some mot ions  o f s o m e f  points  can. 

Such a set S is said to be f ' - t o l e ran t  n-chiral for a n y f  < f .  
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For any finite point set S in E" t h e f  value can be determined as follows. Each 
maximum achiral subset of the n-chiral set S of m points contains c points. Hence, 
for a maximum n-achiral subset A of S, there are m - c points of S not in A. I fm - c 
is even, then half of these points can be moved to become R-images of the other 
half of these points; if m - c is odd, then (m - c - 1)/2 points can be moved to 
become R-images of another (m - c - 1)/2 points, and one additional point can be 
moved to a fixed point of R, for example, if R is a reflection hyperplane, then this 
single point can be moved to the reflection hyperplane. In either case, the new con- 
figuration S' of m points becomes n-achiral, and no motion of fewer points can 
accomplish this. Consequently, 

f = e n t [ ( m - c  + 1)/2]. (5) 

Since chiral configurations form an open set, by some small deformation of any S 
the value o f f  can be increased to the maximum possible value of 

f = e n t [ ( m - n +  1)/2], (6) 

while preserving n-chirality. 
The next result is specific for the case of n-chiral simplex arrangements of 

m = n + 1 points. 

T H E O R E M  3 

No n-chiral simplex 

S = { a l ,  a 2 ,  a 3 ,  • • • an, an+l} 

can be transformed continuously within E n into its mirror image 

so a¢, 
~ l  1 ,  2 ~  " ' "  

without passing through an n-achiral intermediate. 

(7) 

(8) 

Proof 
Consider general paths moving each point ai to its new position a/<>, 

pi(u): where pi(O)=ai, pi(1)=a , (9) 
for each i, 1 ~< i ~< n + 1. These paths are continuous mappings of the parameter 
interval [0,1] into the n-dimensional Euclidean space E n. 

We prove that for any such family {pi(u)}(i=l,n+l ) ofn + 1 paths, that is, for any 
interconversion between the mirror images, there must exist a parameter value u j 
such that the corresponding configuration of points, {pi(l~d)}(i=l,n_t_l) is n-achiral. 

Consider first the first n paths, {pi(u)}(i=1,,). There are the following two possibi- 
lities, (i) and (ii): 

(i) If there is a parameter value d '  for which the n points {pi(uJ')} i 1,~ fall within 
( = ) l  an ( n -  2)-dimensional hyperplane Q, then by adding the point pn+l (u') to this 

set, the entire collection ~pi(u")}(i=l,~+l) of points is necessarily contained in an 



190 P. G. Mezey / Chiral and achiral molecular transformations 

( n -  1)-dimensional hyperplane P(dl). This hyperplane can then be taken as a 
reflection plane within the n-dimensional Euclidean space E n, reflecting the point 
configuration (pi(d')}(i=l,n+l) onto itself, hence this configuration is n-achiral, and 
u" can be taken as u'. 

(ii) If for the given family of paths {pi(u)} i 1,~+1 there is no such parameter (= ) 
value u" for which the n points {pi(u~)} i 1,~) fall within an (n - 2)-dimensional (= 
hyperplane Q, then the first n points {pi(u)}(i=l,~) define an ( n -  1)-dimensional 
hyperplane P(u) for each parameter value u. For each hyperplane P(u), a (not 
necessarily orthogonal) coordinate system is defined by the n - 1 linearly indepen- 
dent vectors 

{pi(u) - Pl (u) } (i=2,,) (10) 

with origin atpl (u). 
Choose a normal vector v(0) orthogonal to the P(0) hyperplane defined by the 

initial points {pi(O)}(i=l,,). Since the paths {pi(u)}(i=l,~) are continuous, the P(0) 
plane changes continuously through intermediate planes P(u) to the final plane 
P(1), and similarly, the normal vector v(0) changes continuously through inter- 
mediate vectors v(u) to the final normal vector v(1). The entire transformation can 
be viewed within a reference frame attached to the moving hyperplane P(u) and 
normal vector v(u), where the motion of the first n points is confined to the moving 
hyperplane. With respect to this rnovingframe, the plane P(u) is a stationary, con- 
stant plane P, and normal vector v(u) is also a stationary, constant vector v. Recall 
that (pi(1))(i=l,n+l) is the n-dimensional mirror image of (pi(O)}(i=l,n+l), and the 
fact that any set ofn points in an n-dimensional space is n-achiral. Consequently, at 
u = 1, after completing their paths within P, the first n points (pi(u)}(i=l,n) return 
to their initial relative positions (u = 0). Since {pi(0)}(i=1,~+1 ) and {pi(1)~(i=l,n+l ) 
are chiral, point 

anO+l --- Pn+l (1) (11) 

becomes the reflected image of point a~+l = P~+I (0), with reference to the plane P 
as reflection plane. Without loss of generality, we may assume that point 

an+l = pn+l(0) (12) 

is within the half-space with positive components along the normal vector v(0), 
then point an<>+l = Pn+l (1) must fall within the half-space with negative components 

0 along the normal vector v(1). The pathp=+l (u) interconnecting a,+l and a,+ 1 is con- 
tinuous, consequently, at some parameter value u', pathpn+l (u) must pass through 

n 0 the (n - 1)-dimensional hyperplane P separati g a,+l and an+ 1 . For this parameter 
value u', all points {pi(u')}(i_l,n+l) fall within the (n - 1)-dimensional hyperplane 
P, hence the point configuration (pi(u ~) } (i=l,n+l) is achiral in n dimensions. [] 

How special n-chiral simplex arrangements are is fully appreciated only if they 
are compared to n-chiral point sets with more than n + 1 points. Some of the fol- 
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lowing results refer to this case. In order to derive these results we first establish 
some rather evident and some more subtle properties of maximum n-achiral subsets 
and their changes induced by the motions of a single point of finite n-chiral point 
set S. 

THEOREM 4 
The lowest dimension of a hyperplane P where a maximum n-achiral subset A 

of an n-chiral finite point set S o fE  n is embeddable is n - 1. 

Proof 
We show that A cannot be embedded in a hyperplane Q of dimension (n - 2). 

Contrary to this, let us assume that all points of A are in Q, then S must have points 
not falling within Q, otherwise S could not be n-chiral, since any point set ofhyper- 
plane Q is necessarily n-achiral. Consequently, we can choose a point aj ~S, 
aj ~ Q. The set Q u aj defines a unique hyperplane P of dimension n - 1. Taking this 
hyperplane P as a plane of reflection in E", the set 

A " =  AUaj (13) 

is its own mirror image, hence A" is an n-achiral subset of S with more elements 
than A. Hence A cannot be a maximum n-achiral subset of S, a contradiction. 
Hence A cannot be embedded in a hyperplane Q of dimension (n - 2). [] 

THEOREM 5 
IfA is a maximum n-achiral subset of a finite point set S in E n, where the cardin- 

ality of A is c, then by moving any point aj of A to a new location ~ that generates 
a new achiral point set A' of cardinality c' i> c + 2, while keeping all other points of 
S fixed, no point symmetry operator R of a symmetry element implying n-achirality 
ofA ~ can map point ajj to itself. 

Proof 
Pick one location for dj where c increases by more than one, 

cr>~c + 2, (14) 

for a new n-achiral set A/. Take any point symmetry operator R that implies the n- 
achirality of the new set A/. Contrary to the proposition, let us assume that the R 
image of point ~ is itself, then R must map the subset A' \ a'y of all remaining points 
of A' to the same subset A ~ \ a'j ofA ~. That is, R is an n-achirality implying symmetry 
operator for A ' \  4 '  consequently, A ' \  ~ is n-achiral. But A' contains at least 
c + 2 points, hence A' \ ~ contains at least c + 1 points, all at their original loca- 
tions. Hence A' \ ~ is an n-achiral subset of the original set S. But A' \ ~ has more 
points than A, hence A could not be a maximum n-achiral subset of S, a contradic- 
tion. Hence, ~ cannot be its own R image for any R implying the achirality of the 
new set A ~. [] 
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THEOREM 6 

If  the conditions of  theorem 5 are fulfilled, then A t cannot be embedded in a 
hyperplane P o f d i m e n s i o n n -  1. 

Proof  
We know from theorem 5 that any point symmetry operator R implying n-achir- 

ality of  the new set A ~ must  map  dj to another point  

Ra~ = a~ (> = ak (15) 

ofA ~. Consequently, no R can be an n-achirality implying point symmetry operator  
of  A' that has an effect equivalent to the trivial permutat ion 7r(1,2, . . . ,  d)  of  points 
in A t. This implies that  A' cannot be contained within a hyperplane P of  dimension 
n - 1, since such a hyperplane P, as a reflection plane, would correspond to an n- 
achirality implying point symmetry operation R mapping each point  of  A' to itself, 
with an effect equivalent to the trivial permutat ion of  points ofA' ,  a contradiction. 
Consequently, A ~ cannot be embedded in a hyperplane P of  dimension n - 1. [] 

THEOREM 7 

Motion of  a single point  aj of an n-chiral finite point  set S of  E ~, where aj is not  
in a max imum n-achiral subset A of cardinality c, cannot generate any new maxi- 
m u m  n-achiral subset A t ofcardinality d less than c. 

Proof  
Since aj ~ S, and aj 6 A, the mot ion of  aj does not influence the symmetry of  set 

A, hence A can lose its status as a maximum n-achiral subset only if another maxi- 
m u m  n-achiral subset of  more points is generated by the mot ion  of aj. Hence, c' of  
any new max imum n-achiral subset A t of the new point set S ~ cannot be less than 
c, d >~c. [] 

THEOREM 8 

Consider an n-chiral finite point set S of  E n, where c is the cardinality of the max- 
imum n-achiral subsets At of S. Assume that some mot ion  of  a single point  aj of  S 
to a new position dj generates a new set St of  a maximum n-achiral subset A' ofcar-  
dinality d i> c + 2, while keeping all other points fixed. Denote a point  symmetry 
operator implying the n-achirality of A' by R and denote the min imum distance 
between any two points of  A t by drain. Define an open ball B(a'j, d,,,in) of radius dm/~ 
about  point  dj. Within the open ball B(dj, dmi,,) it is not possible to move point  dj to 
any new location ay # aj where the same point symmetry operator R would imply 
n-achirality of  a new subset A t' ofcardinality c" >1 c + 2. 

Proof  
Since R is a point  symmetry operator of  the n-achiral set A t, and d je  A t, the rela- 
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tion R 4 ~ A ~ must hold. Since the cardinality ofA ~ is d >i c + 2, we know from theo- 
rem 5 that R 4 ~ 4" For any point aieS ' ,  ai ~ R 4 ,  the following distance con- 
straint holds: 

dmin<~d(R4, ai ) • (16) 

Since point symmetry operators are linear and leave distance invariant, by applying 
the inverse operator R -1 , one obtains 

drain <. d(R -1R 4 ,  R -1 ai) = d( 4 ,  R - l  ai) . (17) 

That is, for any potential location R-lai  where a new position 

4 " = R - l a i  (18) 

for 4 could produce an R image R4" = R R  -1 ai = ai within the set of the remaining, 
fixed points of S, the distance 

d(4 ,4"  ) = d ( 4 , R - %  ) (19) 

from aj is greater than dmin. That is, point 4 cannot be moved to any new location 
d! ¢ d .  within the open ball B(dj, drain) where the same point symmetry operator R 

J ~/ . . . 

would imply n-achirahty of a new subset A" ofcardmahty d ~ ~> c + 2. [] 

Our goal is to show that any 4 location where the cardinality of the induced 
new maximal n-achiral set A ~ is greater by two or more than that of A (that is, 
d f> c + 2), must be an isolated point. From theorem 8 we know that all 4 locations 
where the same point symmetry operator R implies achirality for an induced new 
A ~ maximal n-achiral set with cardinality increased by two or more, must be iso- 
lated. The only possibility not yet excluded for non-isolated 4 locations involves 
different R point symmetry operators implying n-achirality. Theorem 9 below will 
show that even if the point symmetry operators R, implying n-achirality, are 
assumed to have the freedom to change along a continuum, this freedom cannot be 
realized ifd/> c + 2, and no continuum of such 4 locations exists. 

THEOREM 9 
Consider an n-chiral finite point set S of E ~, where c is the cardinality of the max- 

imum n-achiral subsets At of S. Assume that some motion of a single point aj of S 
to a new position 4 generates a new set S' of a maximum n-achiral subset A' ofcar- 
dinality c' ~> c + 2, while keeping all other points fixed. There can exist no continuous 
path p(u) for the motion of point aj, with parametrization 0 ~<u~< 1, starting at 
p(0) = 4 '  and terminating at p ( 1 ) =  4"  4 ¢ -4"  where for each location p(u) of 
point aj along this path the cardinality d(u) of the induced maximal n-achiral set 
A'(u) is greater by two or more than the cardinality of-4t, that is, where for each 
locationp(u) of point aj along this path d (u) >1 c + 2. 
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Proof 
We know from theorem 8 that no such path can exist if the point symmetry 

operator R implying n-achirality of A~(u) is the same along the path; if such path 
would exist, this path would have to pass through a part of an open ball B(a'j, din/,) 
where within B(~,dmi,) only at point 4 does R imply n-achirality of any corre- 
sponding maximal n-achiral subset A, a contradiction. 

Consequently, all we have to prove is that no such pathp(u) is possible with con- 
tinuously varying point symmetry operators R(u) along the path, implying n-achir- 
ality of some A'(u) ofd(u) >~ c + 2. 

Contrary to the proposition, assume that such pathp (u) and family of point sym- 
metry operators {R(u)} exist. Since path p(u) is continuous, the associated point 
symmetry operators R(u) must also change at least piecewise continuously along 
p(u). (An example for such continuously changing point symmetry operators is a 
continuously turning mirror plane, kept turning on an axis by the motion of an off- 
axis point of the plane.) Without loss of generality, we assume that the entire path 
p(u) is such a piece, that is, R(u) changes continuously alongp(u). To each of these 
point symmetry operators R(u) we assign a permutation operator 7r(u) of the point 
set within A~(u) that reproduces the effect of R(u) on A~(u). However, for a point 
set A'(u) of distinct points, no permutation operator 7r(u) can change into another 
one continuously, hence 

~(u) = ~, (20) 

a constant permutation, common for all values of u. Furthermore, these properties 
of permutations also imply that each set A' (u) must include the actual moving point 
p(u) = aj(u) and the same set of additional points, since no permutation can con- 
tinuously switch between distinct points. Consequently, the cardinality of A'(u) 
must also be a constant, 

c'(u)=c'>~c+2. (21) 

The detailed description of the constant permutation 7r is given as 

7r = 7r(kl, k2,. . ,  ki,. . ,  ke). (22) 

We know from theorem 6 that this permutation 7r cannot be the trivial permutation 
7r(1,2,... d) of points in A'(u), since d >~ c + 2, and the n-achiral point set A ~(u) can- 
not be embedded in a hyperplane P of dimension n - 1. 

Since 7r is constant, and only point dj(u) moves, the R(u) image of point 
p(u) = aj(u) is the same, fixed point 

R(u)4(u) =4, 
for all u values. Denote by B the set 

B =  At(u) \ [aj(u) Oa~fl, 

(23) 

(24) 
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that is, the fixed set obtained by removing ~(u) and its R(u) image a' k from A'(u). 
Since B is the same set for all u values, its baricenter (center of mass, iiewe associate 
a formal mass with each point) is fixed at some point x e E n. For each, instanta- 
neous position of a}(u), the baricenter (center of mass)y(u) of the entire set A'(u) is 
found within a 2D plane T(u) containing the three points x, ~ ,  and ~(u). Unless 

• . J . 

x, a'kj, and a'j (u) are cohnear, they define a triangle and the plane T(u) is umque; the 
proof is equally applicable for colinear and non-colinear cases. Since R(u) is a point 
symmetry operator of A'(u), this implies that the distances of d k and ~(u) from 

• J 
the center of mass y(u) must be the same, and since a' k and ~(u) are related by R(u) 

• J o ~ • 

[eq. (23)], their formal "masses" must also be equal even if not all masses" are urn- 
form. Consequently, both y(u) and x must fall on the bisector hyperplane H(u) of 
the [dk, ~(u)] linear segment. Also note that any displacement of~(u)  and the dis- 
placer~er~t of y(u) induced by a displacement of ~(u) must be parallel, as follows 
from the properties of the center of mass. 

Since the distance d(x, d k ) is constant, the distance d(x, ~(u)) must be the same 
j s 

constant, for any displacement of a~.(u), that is, for all values of u. Consequently, all 
motions ofdj (u) that are not rotations about an axis containing x are excluded• 

We shall explore what further restrictions apply for rotations• 
By applying the point symmetry operator R(u) on set A'(u) = {~}, the same set 

of points is obtained, 

A'(u) = {R(u)~.} = {a~}. (25) 

Using the notation for points with permuted indices, set B can be specified as 

B = {a~,}(k,¢j,k,#kj ) . (26) 

For each of the ca - 2 points dk, of B, the distance from a~j is constant, 

' ' , V a ~ B .  (27) d(ak, , akj ) = const. 

When applying the inverse operator R -1 (u) on all these points, then these d - 2 
constant distances are mapped to ca - 2 constant distances of the same magnitude, 
involving the moving point a~.(u): 

! I I d(ai, aj(u) ) --- d( R -1 (u)ak, , R -1 (u)atkj) = d(atk,, atkj) 

= const., Vdk, SB.  (28) 

That is, each of the c a - 2 distances d(~, N(u)) with the constraint a'k, ~ B for index 
i must also be constant, independent of t~ae value of u, that is, independent of the 
location of point ~ (u). 

Depending on the nature of point symmetry operator R(u), there are two possibi- 
lities• 

(i) If 

RE(u)a~.(u) • aj(u), (29) 



196 P. G. Mezey / Chiral and achiral molecular transformations 

that is, if 

R2(u)~(u) = R(u)a~j = ~kj e B ,  (30) 

then the following distance between two fixed points dk~ j and a'kj must be a 
constant, 

d(a~kj, ~j)  --- const. (31) 

The distance between the R-~(u) images of these points must be the same 
constant, 

d(a'kj,c{jj(u)) = d(R-l(u)a~kj ,R-l(u)~j)  = d(C{kkj,dkj ) = const., (32) 

that is, the motion of point ~(u) must preserve its distance from 4 .  We know 
already that point ~(u) must preserve its distance from x, hence, th~ motion of 
point ~(u) must follow a rotation about an axis P that contains both fixed points x 
a n d S .  

We)how that all but one of the points of B must fall on this axis P. 
Precisely one of the Y -  2 constant distances d(~,  ~(u)) with the constraint 

a'k~ e B for index i (eq. 28) involves the specific point dkk j E B. For all other c' - 3 
points dk, ~ B, the relation 

R-X(u)a'k = diieB (dk, ¢d%) (33) 

must hold, consequently, there must be c j - 3 constant distances 

d(~,@(u)) = c o n s t . ,  Vd/~B\ a~k, (34) 

involving points of B and the moving point ~(u). These distances can stay constant 
for all values of u only if all these d - 3 points of B \ ~ fall within an (n - 2)- 
dimensional rotation axis P of the motion of point dj(u). B~t we also know that the 
additional point a' k must also fall within P, consequently, P must contain c ~ - 2 
points from the original set S. Since P, as an axis of rotation m E", is at most 
(n - 2)-dimensional, the dimension of a set Q obtained as 

Q= PU4kj, (35) 

where point a'kk j e B is also a fixed point of the original set S, is at most n - 1. The 
c' - 1 points in the (n - 1)-dimensional set Q necessarily form an n-achiral set, a 
subset present in the original set S. Consequently, the cardinality of any of the max- 
imum n-achiral subsets of S must be at least c' - 1, but we know that for the cardin- 
ality c of any of the original At maximum n-achiral subsets of S c'/> c + 2 holds, a 
contradiction. Consequently, i f  R2(u)~.(u) • ~(u) holds, no continuous path p(u) 
of properties specified in the conditions exists. 

(ii) If the alternative relation, 
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R2(u)dj(u) = aj(u) (36) 

holds, then the effect of R(u) in B must be equivalent to permuting the elements of 
B within B, that is, for each of the d - 2 elements of B, if 

d+ ~ B ,  (37) 

then 

l -l(u)dk, (38) 
Consequently, for each of the c' - 2 constant distances 

dCati, aj(u) ) = d( R -1 (u)a~, , R -1 (U)dkj) ~- a(alk,, a~kj) 

= const., Vdk, ~ B, (39) 

the d(~,  ~(u)) distance is between a point of B and the moving point ~(u). These 
d - 2 distances can remain constant for all values of u, that is, for all positions of 
point ~(u),  only if all d - 2 points of B fall within a (n - 2)-dimensional axis P of 
rotation for the motion of point ~.(u). 

We follow similar steps as in case (i). Since P, as an axis of rotation in E", is at 
most (n - 2)-dimensional, the dimension of a new set Q obtained as 

Q =  B U a'kj , (40) 

where point d k is also a fixed point of the original set S, is at most n - 1. The 
• . J . . . 

c' - 1 points m the (n - 1)-dlmensaonal set Q necessarily form an n-achiral set, a 
subset present in the original set S. We conclude that the cardinality of any of the 
maximum n-achiral subsets of S must be at least d - 1. But we also know that for 
the cardinality c of any of the original At maximum n-achiral subsets of S, the rela- 
tion c' ~> c + 2 holds, a contradiction. Consequently, if R2(u)a'j(u) = ~(u) holds, 
no continuous pathp(u) of properties specified in the conditions exists. 

Cases (i) and (ii) cover all possibilities, consequently, no continuous path p(u) 
of nonzero length exists for the motion of a single point ay of S where throughout 
this motion the cardinality of maximum n-achiral subsets A'(u) is d >/c + 2. [] 

After these preparations, we can easily prove the next result. 

THEOREM 10 
Any n-chiral point set 

S = {al, a2, a3 , . . . ,  an, an+l, . . . ,  am-l, am} (41) 

ofm ~> n + 2 points can be transformed continuously within E n, n 1> 2, into its mirror 
image 

S o = {aOl,a 0 a 0 @ , a g l ,  ,,0 a 0 l  (42) 2 ~ 3 ~"'~ ""~'m-l~ m.I 

without passing through any n-achiral arrangement. 
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hoof 
First determine the cardinality c of a maximum n-achiral subset A of  S. The c 

value is the same for the corresponding mirror image S o . If  c > n, then reduce c to 
c ° = n by applying a chirality-preserving transformation T on S, turning it into 
S°: 

TS = S ° , (43) 

o o o so aO ,aO 
I 1 ~ 2~ "" a n + l ~ ' ' "  

We know from theorem 2 that such transformation T exists. 
Since any point set A ° of  n points within E n must  fall within an (n - 1)-dimen- 

sional hyperplane, each maximum n-achiral subsets A ° of S ° defines a reflection 
plane po.  Using a specific n-achiral subset A ° of SO, defining a reflection plane, this 
plane po  generates the mirror image SO<> of SO, 

So(> f oO oO a~O , ,aOO, oO ,~o0 aOOl (45) 
= t a l  ~ a 2  , • • a n + l ~  • • • ~ ~ 'rn- l~ m J • 

This reflection plane po  contains c ° = n pairwise coincident points from S ° and 
S °<>, where without loss of generality, we can assign indices 1, 2 , . . . ,  n to the points 
within 19o: 

o o a o, o o (46) ,a n ~ P  a 1 ~ a  2 , . . .  

where 

oO o 1 ~ k  ~n  (47) 
a k = a k , 

Define transformation T o as the mirror image of  t ransformation T, one that  
transforms S O to the mirror image S °<> of SO, 

TOS 0 = So<>. (48) 

Since T exists, a transformation TO carrying out the mirror image of  the trans- 
format ion T on the mirror image S O of S, must  also exist. Clearly, T O is also n- 
chirality preserving. 

Since 

m>fn + 2  = c ° + 2 ,  (49) 

we find that for the chirality intolerance o f S  ° 

f ~ > l .  (50) 

Denote  the subset of S ° not within hyperplane po  by QO. Select a path pj for 
o o oO each point a) of QO that converts a) to its mirror image a) by the reflection hyper- 

plane po:  

pj(u): [0,1]--+E n, where pj(O)=a ° ,  p j ( 1 ) = a ~  O, (51) 
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where 

P ° a ~ = a  °<), j = n + l , . . . , m ,  (52) 

and where the same notations are used for the reflection hyperplane po as a geome- 
trical object and po as a symmetry operator. In addition, we require that each 
pathpj fulfills the following conditions: 

(i) each pathpj(u) avoids all points a~ and their mirror images a~, <> for a l l f  ~ j,  

(ii) each pathpj(u) avoids all points where the cardinality c' of a maximum n-achir- 
al subset A(u) of the actual set S(u) is greater than cO+ 1, c~>c° + 2. We 
know from theorem 9 that no such points can form continua, that is, all such 
points are isolated. 

Since there are only isolated points to be avoided, such paths pj(u) exist within 
E n for any n i> 2 and for allj  = n + 1,. . .  m. 

If these motions of points of subset Q along paths pj (u) are applied sequentially, 
then chirality is maintained in all stages of these motions. The actual motion of 
point a~ along the pathpj to its new position a~ <> is regarded as an operation Pj on 
the actual point set. Then, the sequence of transformations 

T, Pj,... ,Pro, (TO)-1 (53) 

converts the original chiral point set S into its mirror image S o by a series of 
motions preserving chirality: 

( TO ) - l e m . . .  e j . . .  en+l Z S  = S 0 . (54) 
[] 

The fact that there are only isolated points to be avoided by transformations 
Pn+l, • •. Pj, •. •Pm is of special significance, implying that according to most of the 
"natural" choices of geometrical probability measures of paths, the family of chir- 
ality-preserving interconversion paths has a probability measure of 1, whenever 
n~>2. 

Hence, the above proof also demonstrates that for any dimension n i> 2, chirality 
preservation is more the rule than the exception, whenever the number of points 
exceeds the dimension by two or more. 

3. Conclusions and  closing remarks 

Interconvention paths between different molecular nuclear arrangements can 
be characterized and classified using chirality properties, more specifically, chiral- 
ity changes along these paths. Chirality is a shape property, hence such a classifica- 
tion is based on relations between molecular shape properties and the shape 
properties of the interconversion paths. The rules described in this study can be 
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viewed within the framework of a global approach to molecular chirality [26], 
where some of the general properties of chirality and achirality preserving reaction 
paths have been discussed. 

By theorems 3 and 10, the n-dimensional generalization of a special, chemical 
question is addressed: what are the conditions and probabilities for the occurrence 
of chiral and achiral nuclear configurations along interconversion paths between 
enantiomers? Most chemical visualization approaches assume that interconversion 
between enantiomers usually occurs via some achiral intermediate structure. A 
molecule with a single formal chiral center, such as the trisubstituted methane 
CHDFC1, can be visualized to convert to its mirror image by forcing the bonding 
pattern through an achiral planar arrangement. However, the interconversion of 
the mirror images of CHDFC1, a five-nucleus molecule, does not require an achiral 
intermediate structure. Such possibilities are well known; an early example of 
transformations between enantiomers by reaction paths along which all nuclear 
arrangements are chiral has been described by Mislow and Bolstad [1 ]. The proof of 
theorem 10 implies that this example is typical, representing a property of the 
majority of chemical reactions. 

Theorems 3 and 10 provide direct proof of the following chirality properties of 
three-dimensional molecular transformations: 

(i) Any chiral molecular arrangement S of four nuclei must encounter an achiral 
arrangement in every process transforming S into its mirror image S 0. 

(ii) Any chiral molecular arrangement S of five nuclei or more can always be trans- 
formed to its mirror image S O without ever encountering an achiral intermedi- 
ate arrangement. 

Note that the theorems do not involve energy considerations, and the energy 
required to follow a chirality preserving path (to pass through its maximum point) 
may be excessively high to be of practical importance. However, reaction paths 
involving only chiral nuclear configurations and interconnecting two mirror 
images always exist for molecules of five or more nuclei. In fact, for any chiral mole- 
cular structure of five nuclei or more, almost all interconversion paths between 
enantiomers have the property that no achiral nuclear arrangement is found along 
them; within a formal, geometrical probability framework, paths with achiral 
arrangements of five nuclei or more form a set of measure zero. Paths with some 
achiral nuclear arrangements, for example, those which involve planar nuclear 
arrangements, are exceptional. 

The results are applicable to dimensions different from 3, for example, to the 
two-dimensional problems of nuclear arrangements along a planar catalytic sur- 
face [47], or to dimensions n >i 4, if one is interested in the interrelations and shapes 
of sets of configurations in a multidimensional nuclear configuration space M 
[46]. Note that the dimension n = 1 is special. In E l, all interconversion paths must 
occur along a single line, that in the case ofm = 3 implies either a formal "collision" 
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between some points, or the occurrence of  1-achiral structures in all rearrange- 
ments  interconverting enantiomers. 
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